AIA PRESENTATION

OUR PANELS MAKE THE difference

Insulated Metal Panels

Best Practice

- MBCI is a Registered Provider with the American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to CES Records for AIA members. Certificates of Completion for non-AIA members are available upon request.
- This program is registered with the AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Learning Objectives

Discover business development opportunities available with insulated metal panels (IMPs)

- Better understand IMPs and the important terms associated with them
- Review policies and codes surrounding IMPs, the construction industry and how IMPs can qualify for LEED & tax credits
- Recognize the advantages of using IMPs to increase the energy efficiency of the building envelope
- Investigate some examples of energy modeling with cost savings via the use of IMPs
- Understand the impact relevant specifications for insulated metal panels can have on the end product

IMPs, comprised of two single-skin metal panels and a non-chlorofluorocarbon (non-CFC) polyisocyanurate foamed-in-place core, are manufactured for both roof and wall applications and are ideal for a wide range of building projects and green building construction.

Business Development Opportunities

Insulated Metal Panels

Business Development Opportunities

- Public work federal, state and local government
- Schools
- Hangars
- Commercial facilities
- Food industry
- Power industry
- Waste water treatment facilities
- Mining operations
- Manufacturing and warehousing

IMP Projects

FORT DRUM BASE

PROJECT TYPE: Government

LOCATION: Fort Drum, New York

PANEL: ECO-FICIENT[™] SUMMIT

IMP Projects

LONDON BRIDGE TRADING COMPANY, LTD

PROJECT TYPE: Commercial Office

LOCATION: Virginia Beach, NY

PANEL: ECO-FICIENT™ SUMMIT

FINISH: Granite Rock Finish

WILLIAM PENN UNIVERSITY

PROJECT TYPE: Institutional

LOCATION: Oskaloosa, IA

PANEL: ECO-FICIENT™ SUMMIT

IMP Projects

WS CONSTRUCTION OFFICES

PROJECT TYPE: Commercial Office LOCATION: Versailles, KY PANEL: ECO-FICIENT[™] ROYAL

IMP Projects

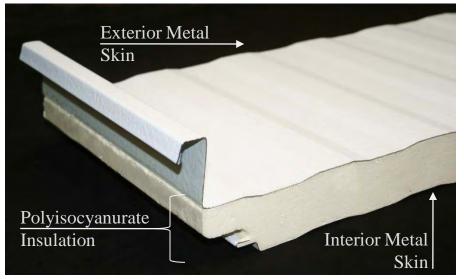
RC DICKENSON YMCA

PROJECT TYPE: Non-Profit

LOCATION: Tulsa, OK

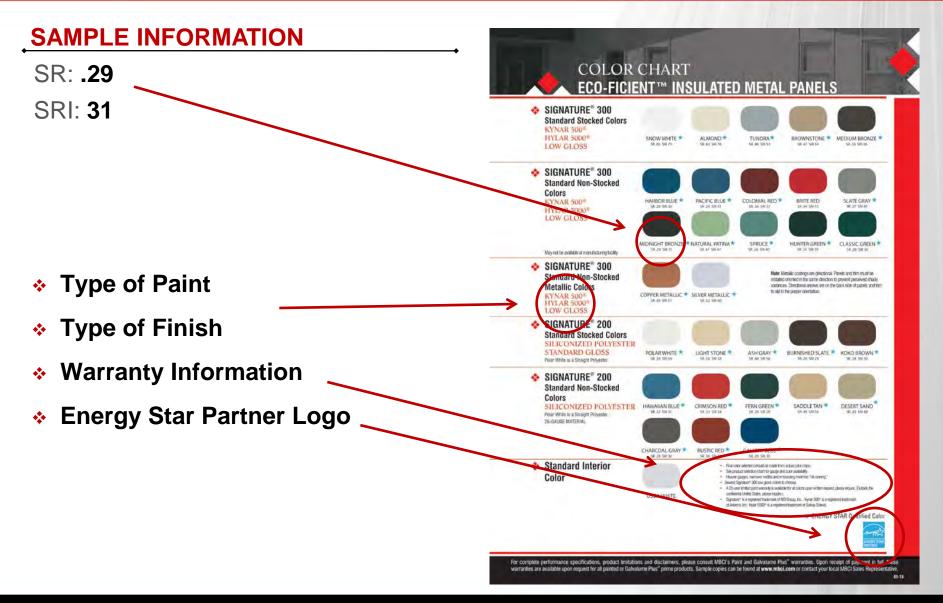
PANEL: ECO-FICIENT™ SUMMIT

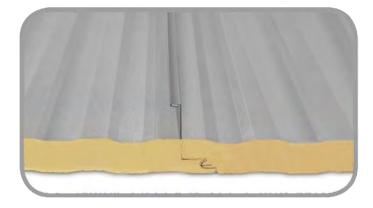
Understanding IMPs & Important Terms

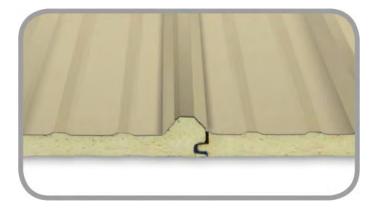

Insulated Metal Panels

Physical Description

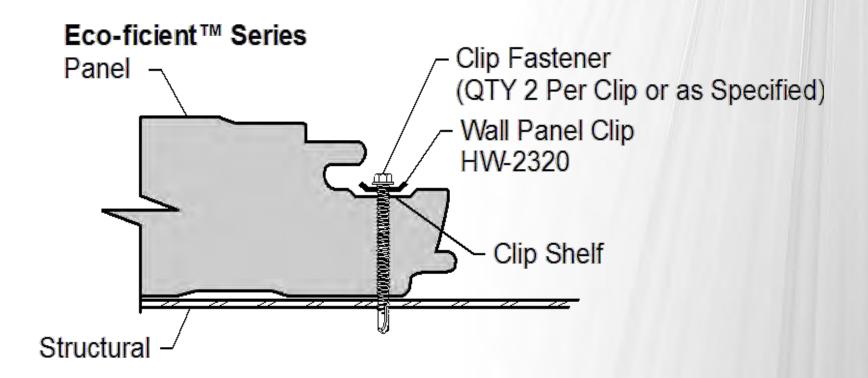
FOAM CORE


- Continuously foamed in place
- Non-CFC polyisocyanurate
- 92% closed cell structure
- Density 2.2 lbs/cu.ft. minimum

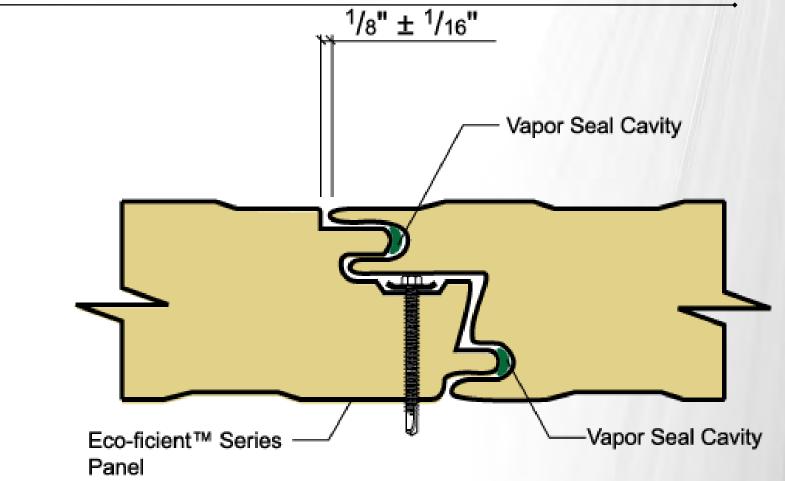

Typical Manufacturer Color Chart


Insulated Metal Panels - Walls

Insulated Metal Panels – Roof & Wall



ECO-FICIENT™ INSULATED BATTENLOK ® INSULATED ROOF PANEL



ECO-FICIENT™ INSULATED R PANEL INSULATED ROOF & WALL PANEL

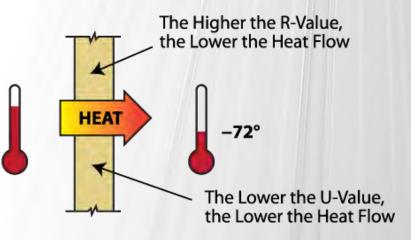
CLIP AND FASTENER ASSEMBLY

ASSEMBLED SIDE JOINT

*Option of 0, 1, or 2 vapor sealants factory applied

Important Terms

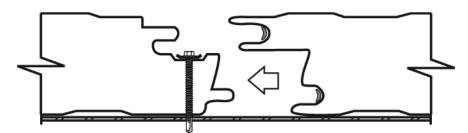
R-VALUE

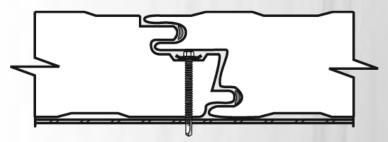

- A measure of the ability to *resist* heat flow through a material.
- The higher the R-Value, the better the insulator.

U-VALUE

- A measure of how much heat is conducted through a material.
- The lower the U-Value, the better the insulator. U-Value = 1 / R-Value.

K-FACTOR

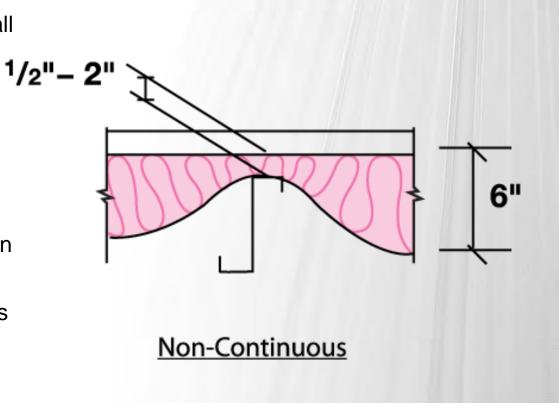

- A measure of a material's ability to transfer heat per unit thickness.
- The lower the K-Value, the better the insulator.
- K-factor (BTU-in/hr-ft²-°F)


96°–

CONTINUOUS AIR BARRIER (CAB)

The combination of interconnected materials and assemblies joined and sealed together with flexible joints that provide the air-tightness of the building envelope above and below grade that separate conditioned from unconditioned space, or from space with conditions that differ by more than 50%.

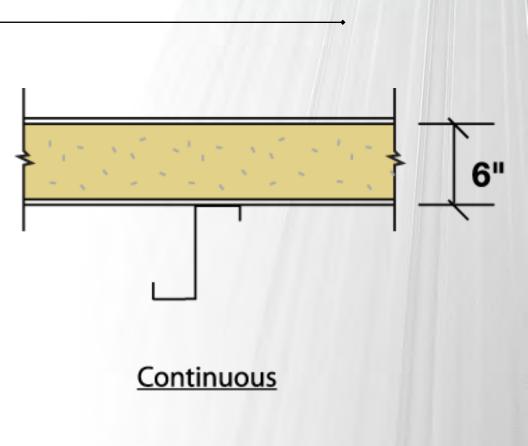
Clip and Fastener Assembly


Assembled Side Joint

Important Terms

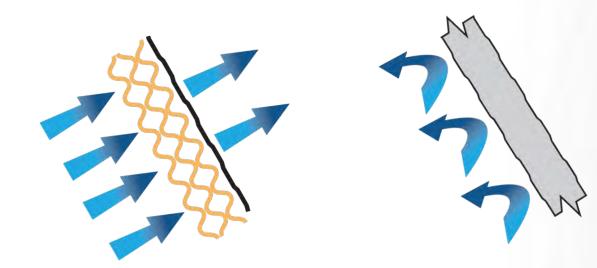
CONTINUOUS INSULATION (ci)

Insulation that is continuous across all structural members without thermal **1** bridges other than fasteners and service openings.


Even small gaps and compressed areas can reduce insulating levels significantly. A study of attic insulation found that just 5% voids in the insulation typical in many installations could reduce the overall R-value by over 40%.

Important Terms

CONTINUOUS INSULATION (ci)

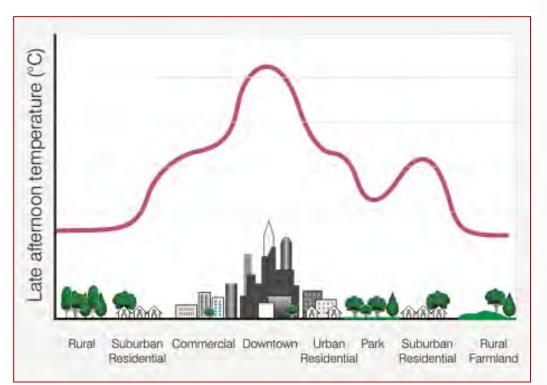

Continuous insulation is important because thermal bridges and discontinuities introduced by compressing non-rigid insulations cause the in-place R-Value of the assembly to be less than the tested R-Value of the insulation used. This effect has become a focus in newer energy efficiency codes such as ASHRAE 90.1 and IECC.

THERMAL DRIFT

A loss in R-Value experienced in rigid board insulation due to the replacement of the foaming gas with air.

IMPs do not experience significant thermal drift due to the metal exterior and interior skins of the panels combined with the closed cell structure.

ASHRAE suggests using an R-Value of 5.6 per inch of polyisocyanurate un-faced rigid board insulation.


While some manufacturers publish an R-Value of 7.0 per inch in their literature a 20% reduction, according to the Department of Energy, usually occurs during the first two years of the foam insulation's life.

Rigid Board Un-faced Insulation

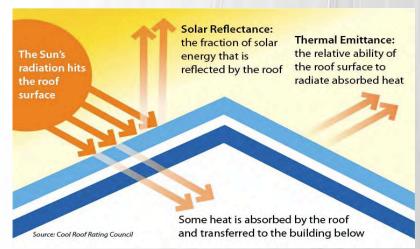
vs. Insulated Metal Panels

HEAT ISLAND EFFECT

Describes built up areas that are hotter than nearby rural areas. The annual mean air temperature of a city with 1 million people or more can be 1.8-5.4 F (1-3 C) warmer than its surroundings. In the evening, the difference can be as high as 22 F (12 C).

Cool Roof Paint mitigates the Heat Island Effect in urban areas

*Image owned by EULEB project http://www.ufficius.com/euleb/en/glossary/index.html


Important Terms

COOL ROOF

The term "cool roof" refers to an outer layer or exterior surface of a roof that has high solar reflectance and high emittance and reduces heat gain into a building.

Considering the environment and the slope of the roof, a cool roof can reduce energy consumption, providing significant cost savings while helping to mitigate urban heat islands.

The Cool Roof Rating Council (CRRC) provides a neutral 3rd party listing service for these systems.

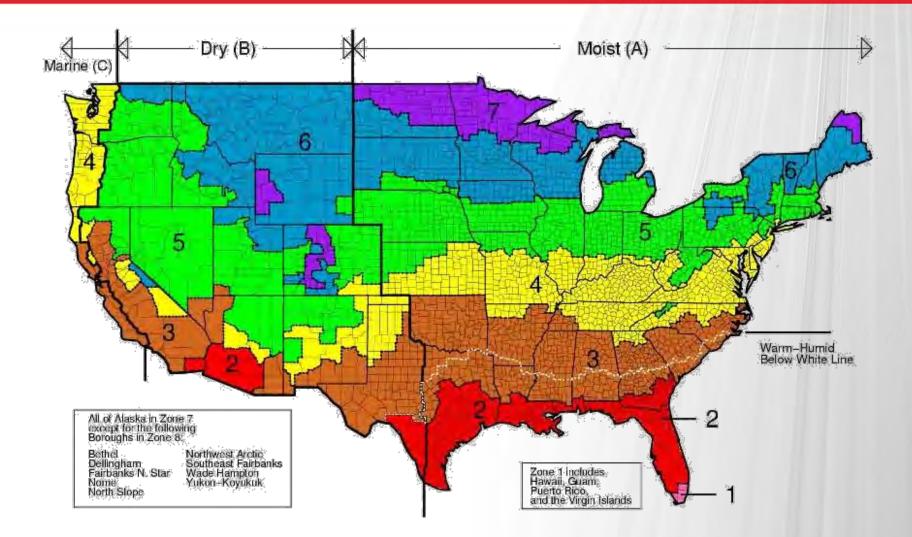
Source: California Title 24

Insulated Metal Panel Advantages

- Come in a wide variety of colors, applied finish offerings, and profiles for buildings to be customized to meet the needs of both design and function.
- High R-Value 7.14 per inch of panel thickness at 75° mean temp
- No significant thermal drift as experienced with un-faced rigid insulation
- Qualifies as continuous insulation where required by IECC and ASHRAE 90.1
- Panels sealed at side laps and at all perimeter conditions
- ASHRAE/California compliant Cool Roof colors available as listed on Cool Roof Rating Council's (CRRC) website (www.coolroofs.org).

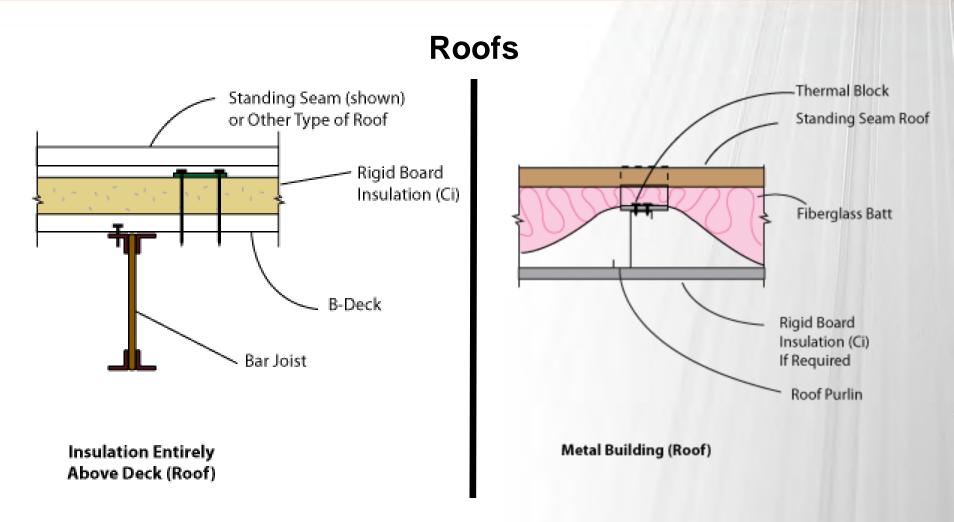
Policies, Codes, & Qualifying for LEED & Tax Credits

Insulated Metal Panels

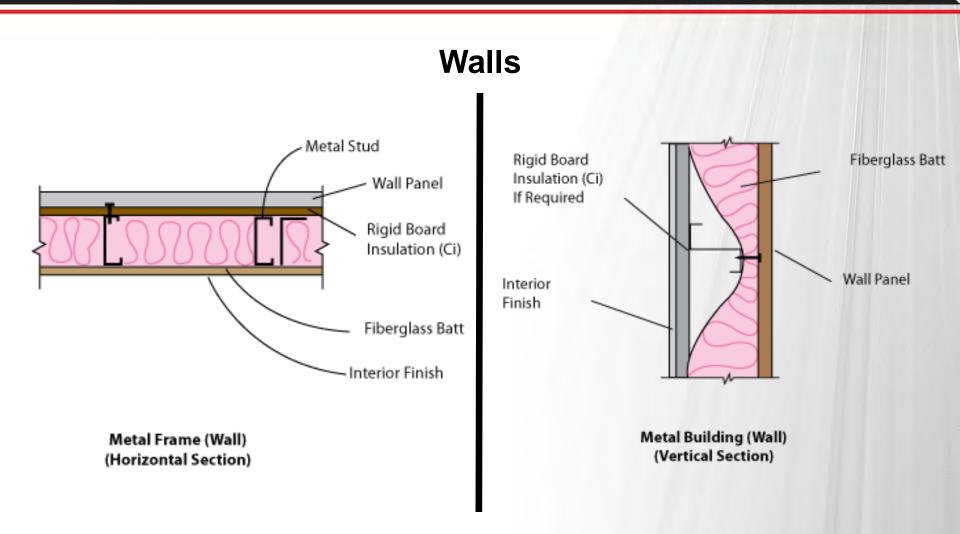

Policy Issuing Organizations

IECC – INTERNATIONAL ENERGY CONSERVATION CODE®

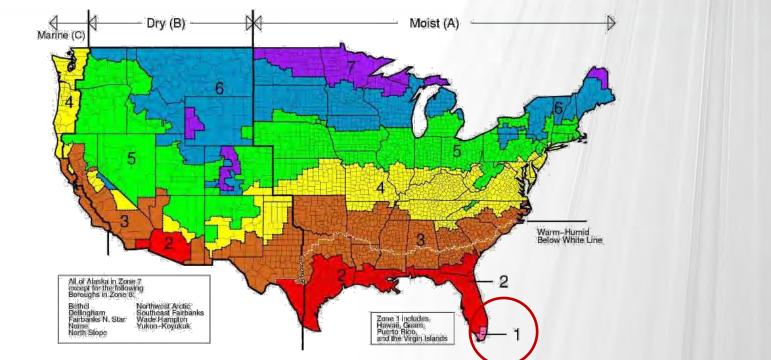
- Establishes provisions that adequately conserve energy, while minimizing any increase in construction costs
- Establishes performance-based provisions that adequately protect public health, safety, and welfare


ASHRAE – THE AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR CONDITIONING ENGINEERS

ASHRAE, founded in 1894, is an international organization of 51,000 persons. ASHRAE fulfills its mission of advancing heating, ventilation, air conditioning and refrigeration to serve humanity and promote a sustainable world through research, standards writing, publishing and continuing education.

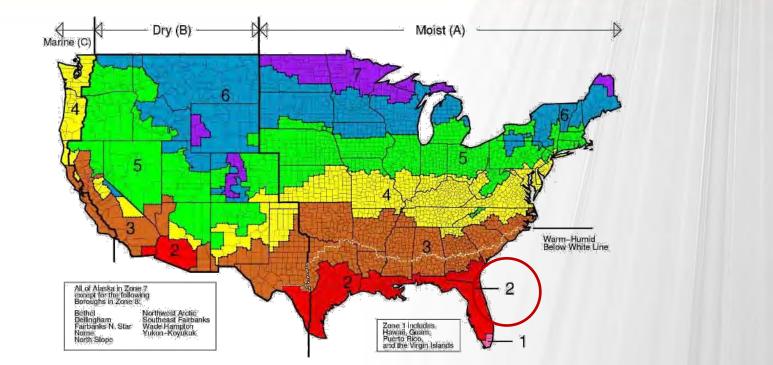

Determining Your Climate Zone is the First Step in the Process

Construction Types—IECC and ASHRAE 90.1



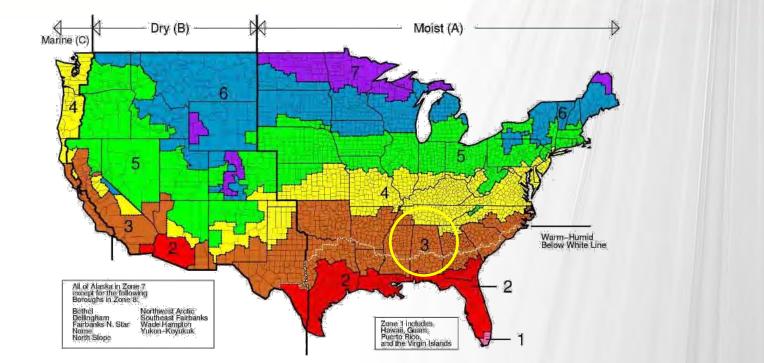
Determining Your Construction Type is the Second Step in the Process

Construction Types—IECC and ASHRAE 90.1


Determining Your Construction Type is the Second Step in the Process

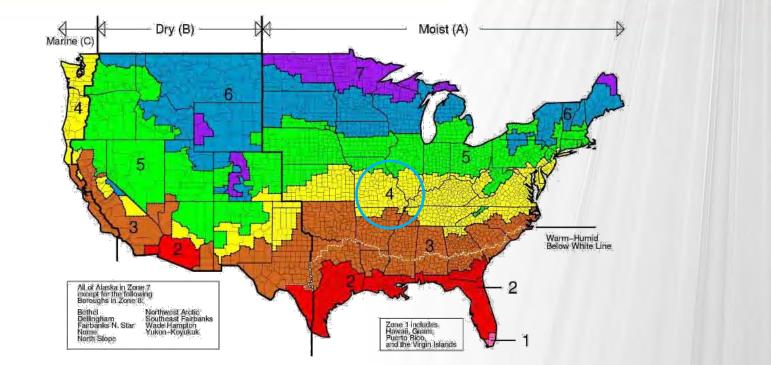
CLIMATE ZONE - ONE

Element	Type of Construction	IECC 2009	ASHRAE 90.1 2007
		R-Value / I	MP Thickness
Roof	Above Deck	R-15ci	R-15ci
	ADOVE DECK	2.5"	2.5"
	Metal	R-19	R-19
	Building	2.5"	2.5"


Element	Type of Construction	IECC 2009	ASHRAE 90.1 2007
		R-Value / IMP Thickness	
Wall	Metal	R-16	R-13
	Building	2"	2"
	Steel Framed	R-13	R-13
		2"	2"

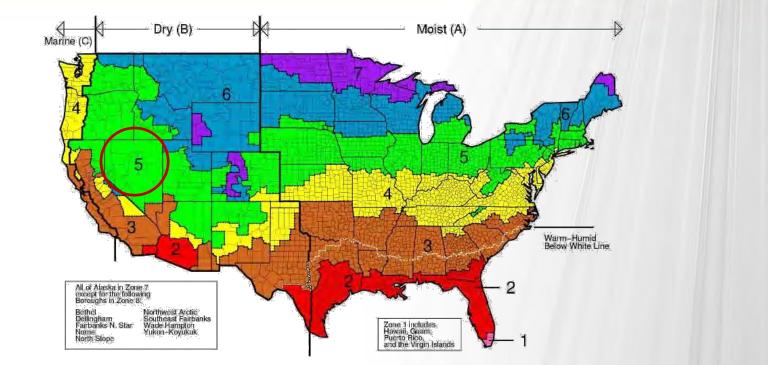
CLIMATE ZONE - TWO

Element	Construction	IECC 2009	ASHRAE 90.1 2007
		R-Value / IMP Thickness	
Roof	Above Deck	R-20ci	R-20ci
	ADOVE DECK	3"	3"
	Metal	R-13+R-13	R-19
	Building	3"	2.5"


Element	Type of Construction	IECC 2009	ASHRAE 90.1 2007	
		R-Value / IMP Thickness		
Wall	Metal	R-16	R-13	
	Building	2"	2"	
	Steel Framed	R-13	R-13	
		2"	2"	

CLIMATE ZONE - THREE

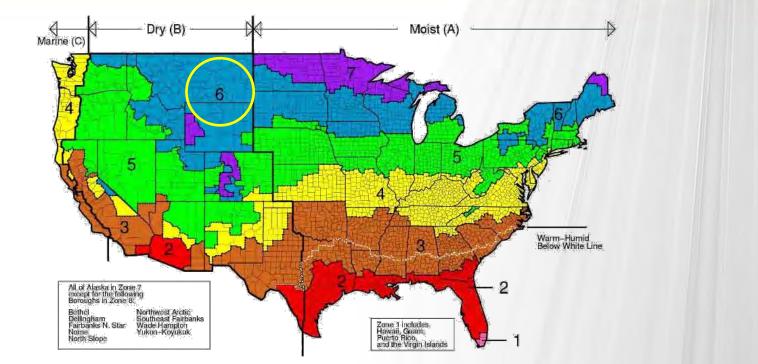
Element	Construction	IECC 2009	ASHRAE 90.1 2007
		R-Value / IMP Thickness	
Roof	Ahove Deek	R-20ci	R-20ci
	Above Deck	3"	3"
	Metal	R-13+R-13	R-19
	Building	3"	2.5"


Element Type of Construction	IECC 2009	ASHRAE 90.1 2007		
		R-Value / IMP Thickness		
Wall	Metal	R-19	R-13	
	Building	3"	2"	
	Steel Framed	R-13+R-3.8ci	R-13+R-3.8ci	
		2"	2"	

CLIMATE ZONE - FOUR

Element	Construction	IECC 2009	ASHRAE 90.1 2007
		R-Value / IMP Thickness	
Roof	Ahove Deek	R-20ci	R-20ci
	Above Deck	3"	3"
	Metal	R-13+R-13	R-19
	Building	3"	2.5"

Element	Type of Construction	IECC 2009	ASHRAE 90.1 2007	
		R-Value / IMP Thickness		
Wall	Metal	R-19	R-13+R-7.5ci	
	Building	3"	2"	
		R-13+R-7.5ci	R-13	
	Steel Framed	2"	2"	

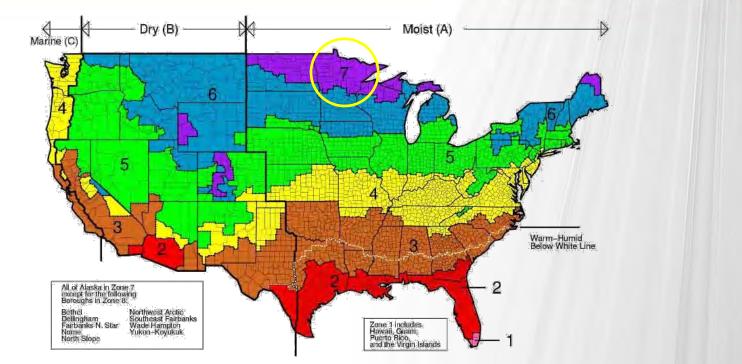


CLIMATE ZONE - FIVE

Element	Construction	IECC 2009	ASHRAE 90.1 2007
		R-Value / IMP Thickness	
Roof	Above Deck	R-20ci	R-20ci
	ADOVE DECK	3"	3"
	Metal	R-13+R-13	R-19
	Building	3"	2.5"

	Flement	Type of Construction	IECC 2009	ASHRAE 90.1 2007
			R-Value / II	MP Thickness
1	Wall	Metal	R-13+R-5.6ci	R-13
		Building	2.5"	2"
			R-13+R-7.5ci	R-13+R-7.5ci
		Steel Framed	2.5"	2.5"

Climate Zones—IECC and ASHRAE 90.1

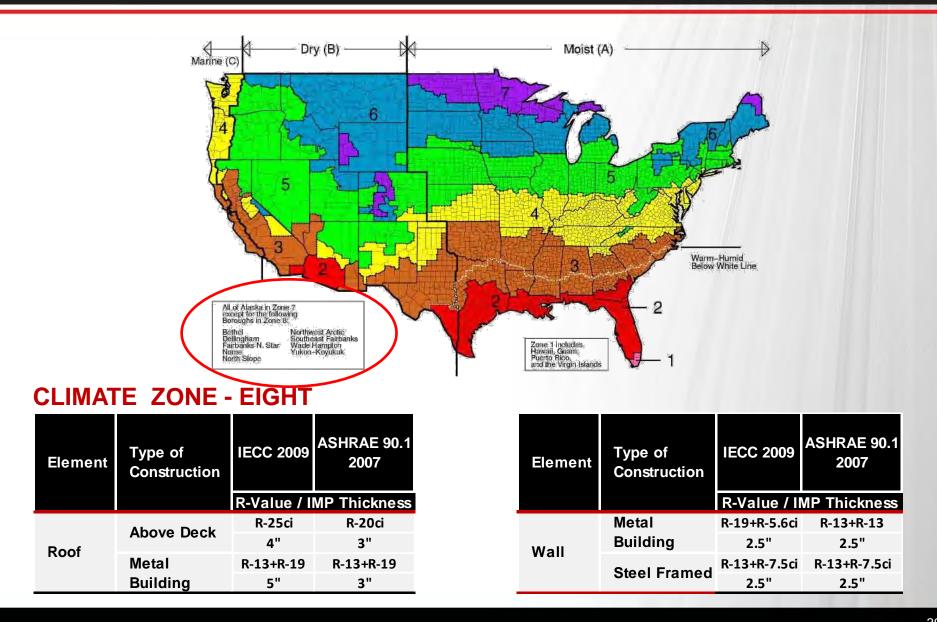


CLIMATE ZONE - SIX

Element	Type of Construction	IECC 2009	ASHRAE 90.1 2007	
		R-Value / IMP Thickness		
	Above Deck	R-20ci	R-20ci	
Roof		3"	3"	
RUUI	Metal	R-13+R-19	R-19	
	Building	3"	2.5"	

Element	Type of Construction	IECC 2009	ASHRAE 90.1 2007		
		R-Value / IMP Thickness			
	Metal	R-13+R-5.6ci	R-13		
Wall	Building	2.5"	2"		
wan	Steel Framed	R-13+R-7.5ci	R-13+R-7.5ci		
		2.5"	2.5"		

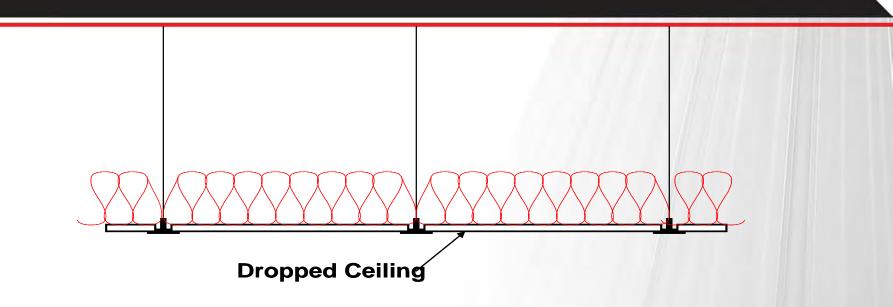
Climate Zones—IECC and ASHRAE 90.1



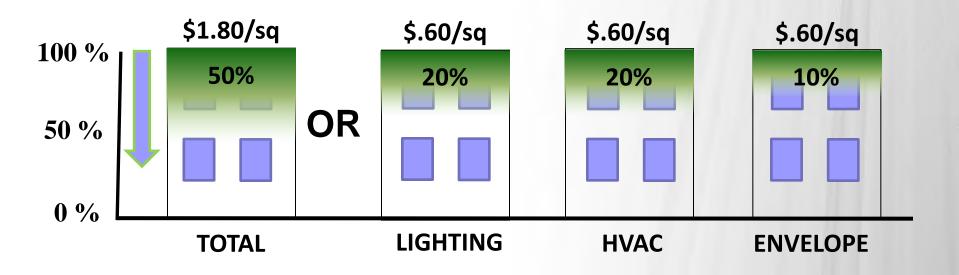
CLIMATE ZONE - SEVEN

Element	Type of Construction	IECC 2009	ASHRAE 90.1 2007	
		R-Value / IMP Thickness		
	Above Deck	R-25ci	R-20ci	
Roof	ADOVE DECK	4"	3"	
RUUI	Metal	R-13+R-19	R-19	
	Building	3"	2.5"	

	Element	Type of Construction	IECC 2009	ASHRAE 90.1 2007	
			R-Value / IMP Thickness		
		Metal	R-19+R-5.6ci	R-13+R-13	
	Wall	Building	2.5"	2"	
		Steel Framed	R-13+R-7.5ci	R-13+R-7.5ci	
			2.5"	2.5"	


Climate Zones—IECC and ASHRAE 90.1

ROOFS	DESCRIPTION
R-19	Standing Seam roof with single fiberglass insulation layer. This construction is R-19 faced fiberglass insulation batts draped perpendicular over the purlins. A minimum R-3.5 thermal spacer block is placed above the purlin/batt, and the roof deck is secured to the purlins.
R-13 + R-13 R-13 + R-19	Standing Seam roof with two fiberglass insulation layer. The first R-Value is for faced fiberglass insulation batts draped over purlins. The second R-Value is for unfaced fiberglass insulation batts installed parallel to the purlins. A minimum R-3.5 thermal spacer block is placed above the purlin/batt, and the roof deck is secured to the purlins.
WALLS	DESCRIPTION
R-16, R-19	Single fiberglass insulation layer. The construction is faced fiberglass insulation batts installed vertically and compressed between the metal wall panels and the steel framing.
R-13 + R-5.6ci R-19 + R-5.6ci	Hybrid system. The first R-value is for faced fiberglass insulation batts installed perpendicular and compressed between the metal wall panels and the steel framing. The second rated R-Value is for continuous rigid insulation installed between the metal wall panel and steel framing, or on the interior of the steel framing.


IECC and ASHRAE 90.1

INSULATION PLACED ON SUSPENDED CEILING WITH REMOVABLE CEILING TILES

- Will not count as roof insulation over conditioned spaces
- Will not comply with sealing requirements

- Rewards owners with a one-time tax deduction of \$1.80/sf employing energy-efficient design in their buildings. The energy cost for the building must improve by 50% over an ASHRAE 90.1-2001 compliant building with Appendix G from ASHRAE 90.1-2004.
- As an alternative, individual deductions may be attained at \$0.60/sf each for:
 * Lighting (20% better) * HVAC (20% better) * Envelope (10% better)

Energy Policy Act of 2005

- Requires energy modeling with EPA-approved software:
 - DOE-2
 - EnergyPlus
 - Other 3rd party software (see <u>www.eere.energy.gov</u>)
- Must get a licensed engineer or architect to verify that installation is consistent with design.

Energy Policy Act of 2005

Title 26, Subtitle A, Chapter 1, Subchapter B, Part VI, Section 179D (d)

(4) ALLOCATION OF DEDUCTION FOR PUBLIC PROPERTY. In the case of energy efficient commercial building property installed on or in property owned by a Federal, State, or local government or a political subdivision thereof, the Secretary shall promulgate a regulation to allow the allocation of the deduction to the person primarily responsible for designing the property in lieu of the owner of such property. Such person shall be treated as the taxpayer for purposes of this section.

IMP Advantages for LEED 3.0

SS CREDIT 7.2: HEAT ISLAND EFFECT, ROOF (1 POINT)

- Most manufacturers offer a wide variety of colors that meet steep slope roofs (>2:12)
- Most manufacturers offer whites that meet the requirements for low slope roofs (<=2:12)

EA PREREQUISITE 2: MINIMUM ENERGY PERFORMANCE

EA CREDIT 1, OPTIMIZE ENERGY PERFORMANCE (UP TO 19 POINTS)

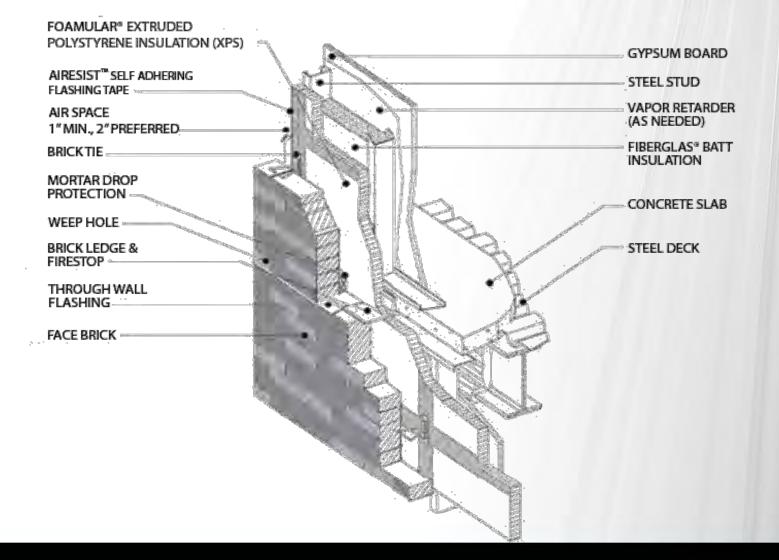
Must be at least 10% more energy cost efficient than ASHRAE 90.1 Appendix G baseline building

CREDIT MR 4.1 AND 4.2 FOR RECYCLED CONTENT (UP TO 2 POINTS)

IMPs & The Building Envelope

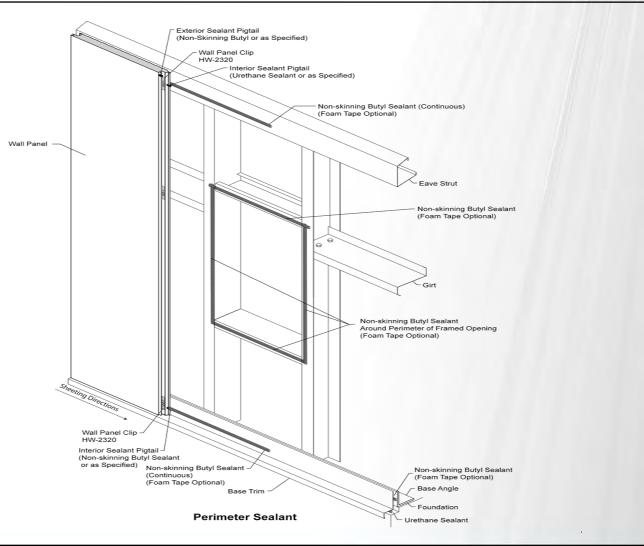
Insulated Metal Panels

IECC and ASHRAE Mandatory Requirements


SEALING OF THE BUILDING ENVELOPE

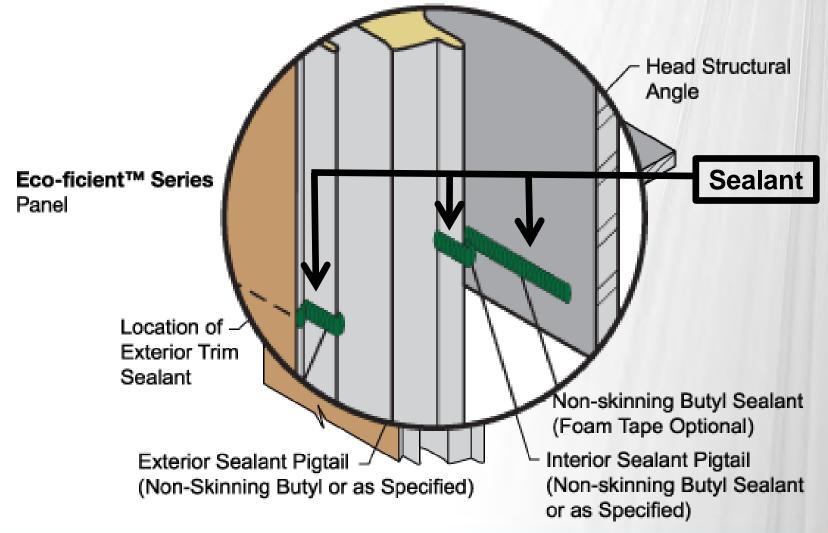
All penetrations, openings, joints and seams in the building envelope must be sealed. Materials that can be used include:

- Caulking
- Gasketing
- Tapes
- Moisture vapor-permeable wrapping material

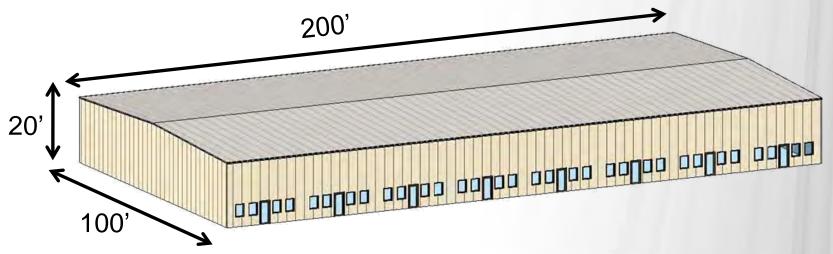

Continuous Insulation and Sealing The Envelope

MATERIAL REQUIREMENTS FOR CONVENTIONAL WALL CONSTRUCTION

Continuous Insulation and Sealing The Envelope

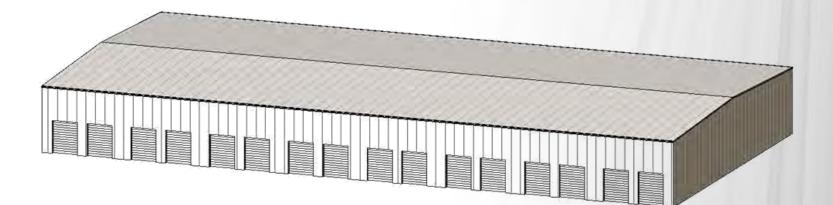

SEALANT DETAIL FOR IMP

Panel Sealant Detail



IMP Energy Savings Model

Insulated Metal Panels


Example Savings – Model

- 100' x 200' x 20' Commercial Warehouse
- ✤ ¹⁄₂": 12" roof (nominally flat)
- ✤ 8-25' Modules, each with
 - (2) 8' x 10' overhead dock doors on north wall
 - (4) 4' x 4' double pane bronze tinted windows and (1)3' x 7' ¼" single pane bronze glass door on the south wall
 - 20' x 25' office space with 10' ceiling with unconditioned plenum above
 - 80' x 25' warehouse full height

Example Savings – Model

- ♦ Office operating M-F, 8am 5pm
 - Heating Set Points 70°(8-5), 64° otherwise
 - Cooling Set Points 76° (8-5), 82 ° otherwise
- Warehouse (24-7)
 - Heating Set Point-68 °
 - Cooling Set Point 78 °

Example Savings – Model

- HVAC System
 - Electric direct expansion cooling
 - Gas furnace
- Two scenarios investigated
 - Single skin metal panels with R-11 on the walls and R-19 on the roof (ASHRAE 90.1 minimum) with Galvalume roof
 - 2" IMP walls and 3" IMP roof (thinnest panels that meet the same ASHRAE requirements)
 - Cool Roof in Houston
 - Dark painted roof in Boston and Minneapolis
 - o Galvalume Plus® in Phoenix

Boston, MA

ALC: NOT THE OWNER OF

		Single Skin	Insulated Panel	Annual Savings
Space	Cooling (MWh)	13.60	12.83	5.66%
Energy Ventilat	ion (MWh)	11.20	10.80	3.57%
Consumption Total El	ectricity (MWh)	24.80	23.63	4.72%
Space I	Heating (MBTU)	402	363	9.70%
GHG Creation Tons of	CO ₂	41.75	38.68	7.35%
Back Cooling Wall Co	nduction (kBTU/h)	18.70	11.90	36.36%
Peak Cooling Loads	onduction (kBTU/h)	65.20	42.90	34.20%
All Load	ds (kBTU/h)	256	229	10.55%
Back Hadding Wall Co	nduction (kBTU/h)	48.30	30.80	36.23%
Peak Heating	onduction (kBTU/h)	57.20	46.40	18.88%
LOaus	ds (kBTU/h)	197	170	13.71%

Minneapolis, MN

		Single Skin	Insulated Panel	Annual Savings
	Space Cooling (MWh)	15.90	14.80	6.92%
Energy	Ventilation (MWh)	11.90	11.00	7.56%
Consumption	Total Electricity (MWh)	27.80	25.80	7.19%
	Space Heating (MBTU)	594	541	8.92%
GHG Creation	Tons of CO ₂	54.68	50.19	8.21%
Posk Cooling	Wall Conduction (kBTU/h)	25.70	16.40	36.19%
Peak Cooling Loads	Roof Conduction (kBTU/h)	71.10	48.00	32.49%
Luaus	All Loads (kBTU/h)	270.4	239	11.61%
Deele Heating	Wall Conduction (kBTU/h)	66.60	42.70	35.89%
Peak Heating	Roof Conduction (kBTU/h)	79.00	64.40	18.48%
Loads	All Loads (kBTU/h)	267	229	14.23%

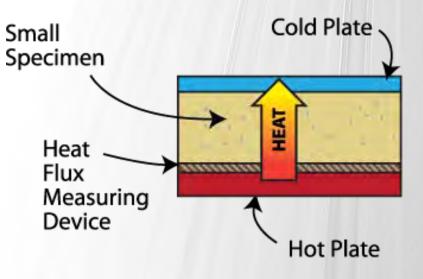
Houston, TX

		Single Skin	Insulated Panel	Annual Savings
a - and	Space Cooling (MWh)	50.4	42.68	15.32%
Energy	Ventilation (MWh)	13.23	10.97	17.08%
	Total Electricity (MWh)	63.63	53.65	15.68%
	Space Heating (MBTU)	55.37	55.69	-0.58%
GHG Creation	Tons of CO ₂	53.44	45.55	14.76%
Deek Ceeling	Wall Conduction (kBTU/h)	29.2	18.62	36.23%
Peak Cooling Loads	Roof Conduction (kBTU/h)	89.5	33.3	62.79%
Loads	All Loads (kBTU/h)	291	225	22.68%
	Wall Conduction (kBTU/h)	39.10	25.00	36.06%
Peak Heating Loads	Roof Conduction (kBTU/h)	45.20	39.00	13.72%
Loaus	All Loads (kBTU/h)	150	130	13.33%

Phoenix, AZ

		Single Skin	Insulated Panel	Annual Savings
	Space Cooling (MWh)	63.40	58.70	7.41%
Energy	Ventilation (MWh)	14.94	13.50	9.64%
Consumption	Total Electricity (MWh)	78.34	72.20	7.84%
	Space Heating (MBTU)	27.90	22.00	21.15%
GHG Creation	Tons of CO ₂	63.57	58.39	8.16%
Deek Cooling	Wall Conduction (kBTU/h)	32.00	20.50	35.94%
Peak Cooling Loads	Roof Conduction (kBTU/h)	84.90	62.70	26.15%
	All Loads (kBTU/h)	322	290	9.94%
Decklieding	Wall Conduction (kBTU/h)	32.70	21.20	35.17%
Peak Heating Loads	Roof Conduction (kBTU/h)	37.40	29.10	22.19%
Loaus	All Loads (kBTU/h)	105	86	18.10%

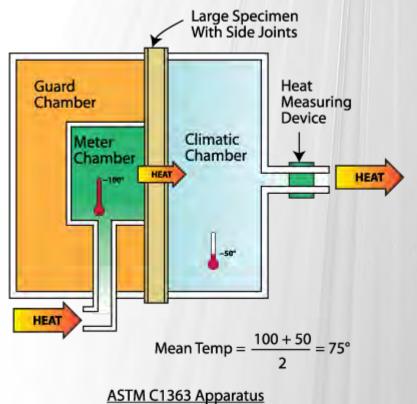
Important Specs You Need to Know


Insulated Metal Panels

ONE OF TWO TESTS ARE COMMONLY SPECIFIED TO DETERMINE ASSEMBLY R-VALUES:

ASTM C518

- Tests only the insulation in flat form not profiled like the panel
- Measures one panel and no joints
- Heat flow measured with an electronic device


ASTM C518 Apparatus

Thermal Resistance

ONE OF TWO TESTS ARE COMMONLY SPECIFIED TO DETERMINE ASSEMBLY R-VALUES:

ASTM C1363

- Tests a complete panel assembly, including profile effects.
- Measures three panels and two joints. Joint effects are included.
- Performed in a hot box. Heat flow is measured more accurately.

FOAM THERMAL PERFORMANCE

- For a mean temperature of 75 F, IMPs have an R-Value of 7.14 per inch of thickness when tested to ASTM C1363
- The mean temperature will affect the results, a colder environment will improve the results
- Many manufacturers report R-Values at 40 F
- R-Values at temperatures lower than 75 F are appropriate in design of refrigeration facilities, but not conditioned buildings

Air and Water Infiltration

	Air	Water
Roof	ASTM E 1680	ASTM E 1646
	Result : No more than 0.002 cfm/sf at a static pressure difference of 12 psf	Result : No uncontrolled water penetration at a static pressure difference of 12 psf
Wall	ASTM E 283	ASTM E 331
	Result : No more than 0.06 cfm/sf at a static pressure difference of 12 psf	Result : No uncontrolled water penetration at a static pressure difference of 20 psf

AAMA 501.1 – WATER PENETRATION

No uncontrolled water penetration through the panel joints when subjected to a 95 mph slip stream air flow and applications of water for 15 minutes.

Fire & Environmental Testing

- ASTM E84 SURFACE BURNING CHARACTERISTICS Establish surface burning characteristics of the foam core – Flame Spread 25/Smoke Developed 145
- FM STD. 4880 Class 1 fire rated insulated wall or wall and roof/ceiling panels, interior finish materials or coatings, and exterior wall systems in wall or wall and roof/ceiling constructions installed to maximum heights of 30 or 50 ft (9.1 or 15.2 m) or unlimited heights when exposed to an ignition source simulating a building fire.
- FM STD 4881,1.1.1 Exterior wall systems are exposed to a number of natural hazards and must reject rain, wind, hail, water infiltration and other deleterious affects caused from everyday exposure to heat, cold, building movement and sunlight.
- FM STD 4881,1.1.2 Exterior wall systems are also exposed to fire and must by able to limit fire propagation over and/or through the assembly.

FREEZE/HEAT CYCLING

No delamination, surface blistering, or permanent bowing when subjected to cyclic temperature extremes of -20 F to +180 F for twenty one eight hour cycles.

HUMIDITY TEST

No delamination or metal corrosion at interface when subjected to a 140 F temperature and 100% relative humidity for a total of 1200 hours.

AUTOCLAVE TEST

No delamination of the foam core from metal skins when exposed to 2 psi pressure at a temperature of 212 for a total of 2 ½ hours

Insulated Metal Panel Advantages - Review

- Come in a wide variety of colors, applied finish offerings, and profiles for buildings to be customized to meet the needs of both design and function.
- High R-Value 7.14 per inch of panel thickness at 75° mean temp
- No thermal drift as experienced with un-faced rigid insulation
- Qualifies as continuous insulation where required by IECC and ASHRAE 90.1
- Panels sealed at side laps and at all perimeter conditions
- ASHRAE/California compliant Cool Roof colors as listed on Cool Roof Rating Council (CRRC) Website.

AIA PRESENTATION

Retrofit Framing Systems

Presented By: MBCI

AIA PRESENTATION

Devil is in the Details

Presented By: MBCI

AIA PRESENTATION

A Review of Metal Panel Warranties Presented By: MBCI

MBCI THANKS YOU FOR YOUR ATTENDANCE

QUESTIONS?

www.mbci.com

This concludes the American Institute of Architects Continuing Education Systems Program

www.mbci.com